首页> 外文OA文献 >Sharp Bounds on Davenport-Schinzel Sequences of Every Order
【2h】

Sharp Bounds on Davenport-Schinzel Sequences of Every Order

机译:每个订单的Davenport-schinzel序列的尖锐边界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the longest-standing open problems in computational geometry is tobound the lower envelope of $n$ univariate functions, each pair of whichcrosses at most $s$ times, for some fixed $s$. This problem is known to beequivalent to bounding the length of an order-$s$ Davenport-Schinzel sequence,namely a sequence over an $n$-letter alphabet that avoids alternatingsubsequences of the form $a \cdots b \cdots a \cdots b \cdots$ with length$s+2$. These sequences were introduced by Davenport and Schinzel in 1965 tomodel a certain problem in differential equations and have since been appliedto bounding the running times of geometric algorithms, data structures, and thecombinatorial complexity of geometric arrangements. Let $\lambda_s(n)$ be the maximum length of an order-$s$ DS sequence over $n$letters. What is $\lambda_s$ asymptotically? This question has been answeredsatisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, andNivasch) when $s$ is even or $s\le 3$. However, since the work of Agarwal,Sharir, and Shor in the mid-1980s there has been a persistent gap in ourunderstanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds onDavenport-Schinzel sequences of every order $s$. Our results reveal that,contrary to one's intuition, $\lambda_s(n)$ behaves essentially like$\lambda_{s-1}(n)$ when $s$ is odd. This refutes conjectures due to Alon et al.(2008) and Nivasch (2010).
机译:计算几何学中最长期存在的开放问题之一是约束$ n $单变量函数的下包络,对于某些固定的$ s $,每对函数的交叉时间最多为$ s $倍。已知此问题等效于限制订单-$ s $ Davenport-Schinzel序列的长度,即在$ n $字母上的序列,该序列避免了形式为$ a \ cdots b \ cdots a \ cdots b的交替子序列\ cdots $,长度为$ s + 2 $。这些序列由Davenport和Schinzel于1965年引入,以对微分方程中的某个问题进行建模,并且此后已应用于限制几何算法的运行时间,数据结构以及几何排列的组合复杂性。令$ \ lambda_s(n)$为$ n $个字母以上的订单-$ s $ DS序列的最大长度。渐近的$ \ lambda_s $是什么?当$ s $为偶数或$ s \ le 3 $时,此问题已得到令人满意的解答(Hart和Sharir,Agarwal,Sharir和Shor,Klazar和Nivasch)。但是,自从Agarwal,Sharir和Shor在1980年代中期开展工作以来,在我们对奇数阶的理解上一直存在差距。在这项工作中,我们通过在每个订单$ s $的Davenport-Schinzel序列上建立尖锐界限来有效地解决问题。我们的结果表明,与一个人的直觉相反,$ \ lambda_s(n)$的行为本质上类似于$ \ lambda_ {s-1}(n)$,而$ s $是奇数。这驳斥了由Alon等人(2008)和Nivasch(2010)提出的猜想。

著录项

  • 作者

    Pettie, Seth;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号